非欧几何有三种不同的含义:狭义的,单指罗氏(罗巴切夫斯基)几何;广义的,泛指一切和欧氏(欧几里得)几何不同的几何;通常意义的,指罗氏几何和黎曼几何。
欧几里得的第5公设(平行公设)在数学史上占有特殊的地位,它与前4条公设相比,性质显得太复杂了。它在《原本》中第一次应用是在证明第29个定理时,而且此后似乎总是尽量避免使用它。因此人们怀疑第五公设的公理地位,并探索用其它公理来证明它,以使它变为一条定理。在三千多年的时间中,进行这种探索并有案可查的就达两千人以上,其中包括许多知名的数学家,但他们都失败了。
罗巴契夫斯基于1826年,鲍耶于1832年发表了划时代的研究结果,开创了非欧几何。在这种几何中,他们假设“过不在已知直线上的一点,可以引至少两条直线平行于已知直线”,用以代替第五公设,同时保留了欧氏几何的其它公设。
1854年,黎曼推出了另一种非欧几何。在这种几何中,他假设“过已知直线外一点,没有和已知直线平行的直线可引”,用以代替第5公设,同时保留了欧氏几何的其它公设。1871年,克莱因把这3种几何:罗巴契夫斯基—鲍耶的、欧几里得的和黎曼的分别定名为双曲几何、抛物几何和椭圆几何。
非欧几何的发现不仅最终解决了平行公设的问题——平行公设被证明是独立于欧氏几何的其它公设的,而且把几何学从其传统模型中解放出来,创造了许多不同体系的几何的道路被打开了。
1854年,黎曼发表了“关于作为几何学基础的假设的讲演”。他指出:每种不同的(两个无限靠近的点的)距离公式决定了最终产生的空间和几何的性质。1872年,克莱因建立了各种几何系统按照不同变换群不变量的分类方法。
19世纪以后,几何空间概念发展的另一方向,是按照所研究流形的微分几何原则的分类,每一种几何都对应着一种定理系统。1899年,希尔伯特发表了《几何基础》一书,提出了完备的几何公理体系,建立了欧氏几何的严密的基础,并给出了证明一个公理体系的相容性(无矛盾性)、独立性和完备性的普遍原则。按照他的观点,不同的几何空间乃是从属于不同几何公理要求的元素集合。欧氏几何和非欧几何,在大量的几何系统中,只不过是极其特殊的情形罢了。
上一条:几何之拓扑学下一条:几何之解析几何
【关闭】